Multifractal properties of price change and volume change of stock market indices

نویسندگان

  • Dusan Stošić
  • Darko Stošić
  • Tatijana Stošić
  • H. Eugene Stanley
  • Luiz Freire
  • Manoel de Medeiros
چکیده

We study auto-correlations and cross-correlations of daily price changes and daily volume changes of thirteen global stock market indices, using multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DXA). We find rather distinct multifractal behavior of price and volume changes. Our results indicate that the time series of price changes are more complex than those of volume changes, and that large fluctuations dominate multifractal behavior of price changes, while small fluctuations dominate multifractal behavior of volume changes. We also find that there is an absence of correlations in price changes, there are anti-persistent long-term correlations in volume changes, and there are anti-persistent long-term cross-correlations between price and volume changes. Shuffling the series reveals that multifractality of both price changes and volume changes arises from a broad probability density function. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavioral Finance Models and Behavioral Biases in Stock Price Forecasting

Stock market is affected by news and information. If the stock market is not efficient, the reaction of stock price to news and information will place the stock market in overreaction and under-reaction states. Many models have been already presented by using different tools and techniques to forecast the stock market behavior. In this study, the reaction of stock price in the stock market was ...

متن کامل

Short-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)

The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...

متن کامل

Investigating Some of Effective Factors on Spoofing Manipulation in Iranian Stock Market

Objective: There is a large theoretical literature regarding stock market manipulation. However, empirical evidence of manipulation remains scare especially in emerging markets like Iran. So, it is vital to detect and prevent. Manipulation distorts prices, thereby reducing market efficiency and harms public confidence. Distorted prices increase market volatility and risk. This study empirically...

متن کامل

Stock Market Fraud Detection, A Probabilistic Approach

In order to have a fair market condition, it is crucial that regulators continuously monitor the stock market for possible fraud and market manipulation. There are many types of fraudulent activities defined in this context. In our paper we will be focusing on "front running". According to Association of Certified Fraud Examiners, front running is a form of insider information and thus is very ...

متن کامل

Ranking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses

The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015